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We investigate the trion formation and the effective trionic properties in the attractive Hubbard model with
three fermionic colors using exact diagonalization. The crossover to the trionic regime with colorless com-
pound fermions upon increasing strength of the onsite attraction parameter U features smoothly evolving
ground-state properties and exhibits clear similarities to the BCS/BEC crossover for two colors. In the exci-
tation spectrum, there is a clear gap opening between a band of well-defined trions and excitations of
broken-up trions at U, ~ 1.8¢. This picture remains the same away from the SU(3)-symmetric point. The spatial
pairing correlations for colored Cooper pairs are compatible with a power law at small attractions and change

to an exponential decay above the trionic crossover. Furthermore, we show that the effective trionic liquid for
U>U, can be well modeled with spinless “heavy” fermions interacting with a strong nearest-neighbor

repulsion.
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I. INTRODUCTION

The possibility to load several hyperfine species of ultra-
cold atoms into optical lattices' has spurred interest in the
study of multicolor lattice models where the color index is
used for the internal quantum number of the atoms. In par-
ticular, fermionic models with three colors were
considered®”’ because three colors is the first step beyond the
usual two internal degrees of freedom of simple spinful
many-electron systems, and, more ambitiously, these three-
color systems might reproduce phenomena known from
quantum chromodynamics where three colors of quarks in-
teract and give rise to different types of composite particles.
Assuming an idealized situation where the hopping of the
individual colors and the interaction between them are color
independent, the core model is the SU(3)-symmetric Hub-
bard model with the Hamiltonian

. U .
H=-1 2 Ciacja - 5 E Cjaciaciﬁciﬂ (1)
(i), i,a# B

with fermionic annihilation (creation) operators cg"'). The
color indexes «, 8 range from 1 to 3. ¢ denotes the hopping
amplitude between nearest-neighbored sites i and j on the
lattice. Note that we have chosen to use the parameter values
U>0 for the attractive case.

In the ultracold atom framework, the strength and sign of
the onsite interaction U between the atoms can be taken as
variable. The case of attractive interactions —U <0 seems to
offer an appealing trajectory as the strength of the attraction
is increased. At weak coupling, the two-particle interaction
flows to strong coupling at low temperatures, leading to the
formation of Cooper pairs.>*% As the bare attraction and the
kinetic energy are SU(3) symmetric, there is a degeneracy
between the energies of all possible two-color pairing states.
In mean-field theory for the infinite system where symmetry
breaking is possible, this results in a five-dimensional sphere
of degenerate BCS ground states, with a vectorlike order
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parameter composed out of three complex numbers A,g=
—Ag,, where only the magnitude Ag=3,4A,4%/2 is fixed.
This state has some rough resemblance with the color super-
fluid composed out of quark-quark pairs in high-density
QCD.? Upon increasing the attraction strength, the formation
of onsite molecules of three particles with different colors,
so-called trions, becomes more favorable.*’ Indeed, using a
variational ansatz,* a trionic transition from the color super-
fluid into a trionic phase with colorless, heavy trions was
found. The trions are the analogs of hadrons in QCD, and the
famous QCD transition is supposed to occur between a col-
orful state at high quark densities and confined hadronic mat-
ter at lower densities. Interestingly, the QCD phase transition
is usually described as first-order transition while the trionic
transition in the attractive Hubbard model was first found to
be continuous.* Very recently, a refined variational study for
finite temperatures indicated a first-order transition for the
trionic case as well.”

With the gross features of the phase diagram as function
of U now being clear, many interesting questions arise. Natu-
rally, one would like to check the results of the variational
approach* with an independent method and learn more about
the trionic transition. Further the trionic state itself is an in-
teresting interacting heavy-fermion system and could un-
dergo additional phase transitions. However the quasiparticle
properties and interactions of the trionic state are not easily
found. One way to proceed, e.g., for finding the dispersion of
the trions, is a systematic expansion in #/U around the
“atomic” limit. Alternatively, the trionic bandwidth and ef-
fective interactions can be addressed using exact diagonal-
ization (ED) of small systems which in addition provides a
wealth of other information, e.g., on the excitation spectrum
and correlation functions. Here we employ full ED for the
calculation of spectral functions and the Lanczos ED method
to study the trion formation in the energetically lowest states.
Using this information, we derive an effective low-energy
trion Hamiltonian. This Hamiltonian in turn can be analyzed
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FIG. 1. (Color online) Data for a 14-site chain, one fermion/
color. Right vertical scale: empty circles: energies of the lowest
states from ED, U=t. Full circles: same for U=6¢. Left vertical
scale: trionic weight w, for the same states, empty squares U=t¢, and
filled squares U=06t.

with respect to subsequent trion phase transitions.

For the one-dimensional (1D) case, additional instabilities
of three-component systems such as density waves or a
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase have al-
ready been discussed, e.g., using density-matrix renormaliza-
tion group.”!®!! Moreover breached pairing was found for
Fermi gases in a trap.'? There also were reports about the
successful creation of a degenerate Fermi gas consisting of
three different hyperfine states of °Li (Ref. 13) as well as
mixtures of °Li with “’K (Ref. 14) or even 'Yb (Ref. 15).
Further there are theoretical estimates on the stability of such
mixtures themselves'® and against particle loss due to three-
body recombination processes.!”!8

II. LOW-ENERGY SPECTRUM AND TRIONIC REGIME

Let us start with the many-particle low-energy states of a
SU(3)-symmetric system as found by ED using a Lanczos
scheme. In order to get a concrete picture, we compute the
spectrum of a small chain of N sites with periodic boundary
conditions and n,=1 fermion per color. In Fig. 1 we show
the energies of the energetically lowest N+2 states for weak
and for stronger attraction. The number of states shown is
chosen N+2, as the interesting trion physics happens in the
lowest N states, where the (N+ 1)st state marks the beginning
of the less trionic regime. For larger interactions, the N lower
states received their main weight from the basis states with
the trion on one of the N sites. We find the same sequence of
energies for N—1 trions on N sites, now the trion hole has N
possibilities to reside on. In addition, we plot the trionic
weight w,, defined as the fraction of an eigenstate that is due
to pure trion states, i.e., those N states with the maximum of
three fermions on a single site. We observe that, for U=¢, w,
in low-energy states is relatively small, and there are strong
fluctuations in w, for the lowest N+2 states. Hence the tri-
onic weight seems to be a less important property of the
low-energy states. This changes for larger attraction: for U
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FIG. 2. (Color online) Data for a 19-site chain, one fermion/
color. Right vertical scale: empty circles: interaction energies of the
lowest states from ED, U=t. Full circles: same for U=6t. Left
vertical scale: trionic anticommutator for these states, empty
squares U=t, and filled squares U=6¢.

=0t, there are N low-energy states which are separated in
energy from the higher states by a gap A, which grows
roughly linearly with U minus an offset. For these lowest
states, w; is near unity and much higher than for the follow-
ing states. The excited states have a lower trionic content and
have hence a larger amplitude of basis states with broken-up
trions. Clearly, this data shows the formation of a trionic
band, which, for larger attraction, is separated from excited
states with split-up trions by an energy gap of the order |U]|.
One may also observe from the data at large U that the low-
est many-particle states have by no means the largest trionic
weight. Rather the highest states in the trionic band are the
most trionic. Clearly, this is due to a compromise between
kinetic and interaction energy, i.e., the trions need to split up
and sacrifice some binding energy in order to lower their
kinetic energy.

With the definition of the trionic annihilation (creation)
operator t(‘) via t;=c; c;pci3, We take a look at the spatially
averaged trionic anticommutator [¢7,7],=1/NZ; (tTt +1; tT)
which is a measurement for the well definedness of the trions
as compound fermions, and the binding energy of the lowest-
lying N+2 states. Now the formation of the trionic regime
becomes even clearer. For weak attraction U=t the lowest
states in energy have nearly zero interaction energy, that is,
the expectation value of the interacting part of the Hamil-
tonian, as they basically consist of nontrionic states. We fur-
thermore see in Fig. 2 that for U=t the anticommutator does
not change much over the N+2 states. It is still close to the
noninteracting result n°+(1-n)>~0.85 for the density n
=1/19 per color. In contrast, we find jumps in these values
between the Nth and the N+ 1st state at large attraction U
=6¢. Where the binding energy of nearly 3U identifies the
lowest N states to be trionic, the drop to roughly 1U for the
following states indicates that these are composed out of a
pairs separated spatially from one single fermion. This sug-
gestion is supported by the values of the trionic anticommu-
tator at U=6¢, also plotted in Fig. 2. The data clearly shows
a drop between states N and N+1.
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FIG. 3. (Color online) Data for a 14-site chain, one fermion/
color. Location of the trion gap opening for asymmetric interactions
U,=U3=U>0 and U,3# U. Inset: trionic gap vs U/t for the sym-
metric case Up=U;3=Uy;=U.

A closer look at the anticommutator for U=6¢ within the
lowest N states reflects the behavior of the trionic weight
described above. While the trion formation is very strong and
the anticommutator is close to one for all states in the lowest
band, it is not the ground state which has the largest anticom-
mutator. Instead, from the ground state to the highest trionic
state the value of the anticommutator rises monotonically.
This can again be explained by the fact that the states within
the trionic band try to optimize their kinetic energy by break-
ing up the trions virtually.

The energy gap between the states with highest trionic
weight and the rest of the spectrum shall be called the trionic
gap. In the inset of Fig. 3 we plot the trionic gap J; as a
function of U for two different densities. The onset of the
gap, and hence the trionic band, U, is at 2U,~ bandwidth (47
in this case), where 2U is difference of the binding energy of
a single trion and a “pair + separated-fermion” configuration.
We have checked that U, for one trion on N sites does not
vary strongly with N, and also for more trions it is only
changed slightly. The value for U, agrees quite well with the
location of the superfluid-to-trions transitions in the varia-
tional treatment of Rapp et al., as will be discussed more
somewhat below.

The trionic gap described above shows a marked onset at
a critical U,. It should be emphasized however that this gap
is not to be confused with a gap in the single-particle spec-
trum or in the effective low-energy trionic spectrum. It is a
property of the excitation spectrum and not of the ground
state, separating the primarily trionic many-particle states
from the less trionic ones. Hence the opening of the trionic
gap should be understood as parameter value where a full
band of well-defined single trion excitations becomes sepa-
rated from other excitations involving broken-up trions, and
where an effective trion model which does not resolve the
color degree of freedom becomes appropriate.

Ground-state properties evolve completely smoothly as
function of the interaction strength. In Fig. 4 we plot the
trionic weight in the ground state versus attraction strength U
for one trion on 10 and 20 sites. The rise of w, contains some
steps which however are clearly seen to be finite-size related.
As a comparison we also plot the weight of doubly occupied
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FIG. 4. (Color online) Trionic weight and pairing weight in the
ground state of 111 (short for n;=1, ny=1, n3=1) and 110 sys-
tems for a 10-site chain and a 20-site chain.

sites in the ground states in a system with only two colors
and local attractions, corresponding to the BCS/BEC cross-
over. As the local pairs have less binding energy, the cross-
over occurs at larger attraction U, but otherwise the behavior
of the weight of compound particles in the ground state is
very similar. Hence, if we do not allow for spontaneous sym-
metry breaking, there is a smooth connection between the
weak-coupling ground state and the trionic state at large at-
tractions. Nevertheless the opening of the trionic gap is a
significant phenomenon, as it allows us to describe the low-
energy theory in terms of well-separated trionic excitations
only.

In Fig. 3 we also show the location of the trionic gap
opening for interactions which violate the SU(3) symmetry
and where U,; acting between colors 2 and 3 is different
from the other two interaction constants. The trion formation
is a generic feature as long as all three colors attract. A weak
onsite repulsion between two colors is also tolerable, as one
can see from the extension of the trionic regime to negative
U,;. Hence, while the color superfluid at weak attraction re-
quires a symmetric situation, the trion formation is a general
feature of the three-color system and could thus be realized
much more easily in experiments.

We have also compared the value for the trionic gap open-
ing for different system sizes with one or two trions and
symmetric interactions. We found small quantitative changes
but there was always a clear energetic separation between
primarily trionic and other states at interaction strengths
above U,.~bandwidth/2. The data suggests clearly that U,
remains nonzero in the dilute limit.

An obvious question is whether the system of three colors
of fermions with attractive interactions also contains a BEC
regime, where the ground state is composed primarily out of
strongly bound pairs of two different colors. In the limit of
local pairs, there is a simple argument to understand that
such pairs are not stable. If such a difermionic regime would
exist, it should be found at U values below the trionic re-
gime, i.e., at U= U_.<2dt in d dimensions on the hypercubic
lattice. Now, the binding energy of one trion is 3U, which is
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2U more than for a pair. So breaking up a trion costs 2U,
where the kinetic-energy gain for the system is about 2d¢ for
the freed fermion. Breaking up the pair as well now only
costs U but gains 4dr of kinetic energy. The latter gain is
certainly larger if we are below the threshold for trions.
Therefore this pair split will be preferred instead of breaking
up another trion. Accordingly there is no stable difermionic
regime and by that no BEC regime with such strongly bound
pairs. This can also be inferred from comparing the curves
for the trionic case with three colors and the local pair case
with only two colors in Fig. 4. The local pair regime occurs
only deep in the parameter range of the trionic regime.

On the other hand, as discussed in previous works'® at
weak U Cooper pairing with loosely bound pairs is possible.
The argument stated above basically means that the trajec-
tory known from two-color system with increasing attraction
where the pair size shrinks continuously becomes unobserv-
able. Already at intermediate U, it is more favorable to form
local trions, and the nontrionic many-particle states neces-
sary for maintaining longer-ranged pairing loose their
weights in the low-energy sector.

III. CONNECTION TO THE SUPERFLUID-TO-TRIONS
TRANSITION AND PAIRING CORRELATIONS

The variational analysis of Rapp et al.* showed a continu-
ous quantum phase transition between a color superfluid at
small attraction to a colorless trionic phase at larger attrac-
tion at a critical U,~ 1.774. This transition is driven by the
competition between the Cooper pairing instability and the
local formation of trions that are implemented as completely
immobile or frozen in the variational ansatz of Ref. 4. In this
trionic wave function, the expectation value for any nonlocal
pairing correlation vanishes identically. This forces the BCS
amplitude to precisely zero when the frozen-trions wave
function becomes energetically favorable. Very interestingly,
in a recent paper Inaba and Suga® present a variational clus-
ter approximation (VCA) study of this transition for the den-
sity of states of the infinite-dimensional Bethe lattice. They
find a first-order transition between the color superfluid and
the trionic state at low temperatures, hence the precise nature
of this transition is at least a subtle issue that in theory de-
pends on the approximation.

In our finite systems, there cannot be any spontaneous
symmetry breaking. Hence instead of a quantum phase tran-
sition we rather have a crossover into the trionic regime.
Nevertheless one can expect that the U values for the forma-
tion of the well-separated trion band are a good estimate for
the attraction necessary to suppress the color superfluid effi-
ciently by strongly reducing the weight of nontrionic states
in the ground state. Indeed, this value, expressed in U over
the bandwidth, from the exact diagonalization in one and two
dimensions is very close to the variational results in the limit
in infinite dimensions and to the value in the VCA study.’

The spatial Cooper-paring correlations, for simplicity in a
one-dimensional chain,

Ox-x")=> <ca(x)CB(X)CE(X,)CL(XI)>GS’

for o+ B can be readily measured in the ground state found
by the diagonalization. In the ground state of a noninteract-
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FIG. 5. (Color online) Data for a 12-site chain, 333 filling. Left:
logarithmic plot of the pairing correlations II vs distance d, in the
ground state for different U. For very weak interaction (U=0.01,
open squares) the data show a dip, a kpd, =, as expected from the
noninteracting case. One can also observe the nearly exponential
decay for strong interactions (U=6.00, filled squares). For interme-
diate attraction (U=1.60, open circles) near the crossover to trions
the pairing correlations are largest. Right: logarithmic mapping of
the pairing correlation for distances up to half the system size and
attractions 0= U=35 and contour lines. The solid line shows the U
dependence of the pairing correlations maximum. Top: fitting pa-
rameter N\ (with error bars) discriminating the weakly interacting
regime from the regime with exponential decay of pairing. Also
shown are the fit results for the exponential decay factor f, which
have huge error bars for small interaction where \ is near zero and
the exponential decay plays only a negligible role.

ing Fermi liquid one finds a spatial dependence that goes like

sin?(kpAx)
(Ax)?

with the distance Ax=x—x'. This gives a node at distance
Ax=/ky with the Fermi vector k. For a system with three
fermions of each species on a 12-site chain the node is ex-
pected at Ax=4. In the strongly coupled regime one expects
an exponential decay of the pairing correlations, as doubly
occupied sites necessary to maintain the pairing are punished
by a finite energy ~2U, and hence the weight of these states
in the ground state should be suppressed exponentially. The
left part of Fig. 5 shows the pairing correlations for different
U as function of the distance. For very small interactions, the
node of the free solution is clearly visible. In the trionic
regime we find an exponential decay realized up to Ax
=kp/ m=4. For larger distances the decay is slower due to
finite-size effects coming in from the other side. The data
also shows that for intermediate attraction neither of the two
descriptions is good and one gets a crossover behavior. In
fact one would expect power-law behavior but we refrain
from determining an exponent in our small systems. The
main point is the onset of an exponential decay above a
critical attraction strength.

The right part of Fig. 5 displays the logarithm of the pair-
ing correlations on a distance-vs-interaction grid together
with the respective contour lines. The solid “vertical” line
sketches the U-dependent maximum of the pairing correla-

Iy(Ax) ~
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tions. The data shows clearly that a small onsite attraction
first enhances the Cooper pairing. Above a threshold value
below the onset of the trion formation, the Cooper pairing is
suppressed. This behavior of the pairing correlations vs U for
our small 1D system follows closely the variational result for
the infinite- and high-dimensional systems of Rapp et al*
Fitting the data with a linear combination of the two models,

(x) ~ Ne ™ + e V9] 4 (1 - My(x) + (N - x)],
()

where f is a free fit parameter and 0=N=1 interpolates
between free fermion behavior (A=0) and exponential decay
(A=1). Note that the rise of the weight \ of the exponentially
decaying component is rather steep. It seems well possible
that in a larger system the rise will become a step. This
would be consistent with a first-order transition. In any case
the data indicates that the pairing correlations undergo a
rapid change as function of the attraction strength, making it
very plausible that the precise nature of the color-symmetry-
breaking transition in the infinite system is a subtle issue.

We think that the similarity of our data for the small chain
to the variational results for the thermodynamic limit in Refs.
4 and 9 is due to the local nature of the trion formation which
is to a large degree independent of the dimensionality or
lattice topology. Nevertheless one might wonder if some
kind of longer-ranged pairing correlations could persist even
in the trionic regime of the infinite system, as indicated by
our fit to the pairing correlations that shows a remnant power
law above the transition. Hence it is interesting to investigate
the superfluid-to-trions transition in a framework that goes
beyond the treatment of Ref. 4 by allowing a certain admix-
ture of nontrionic states into the ground state that could sup-
port Cooper pairing even in the trionic regime. The VCA
study of Ref. 9 is a first step but it still works in infinite
dimensions where the kinetic energy of the trions is zero due
to the scaling of the single-fermion hopping. This could un-
derestimate the admixture of nontrionic states to the low-
energy sector.

IV. EFFECTIVE TRION HAMILTONIAN

As the trions are relatively well-defined anticommuting,
i.e., fermionic particles for sufficiently large U, we can at-
tempt to describe the low-energy physics with an effective
trion Hamiltonian. In principle, the effective trion hopping
and also the effective interactions can be found analytically
by a t/U expansion.”’ The main contributions were already
given qualitatively in Ref. 5. Alternatively, with our ED ap-
proach, the values for hopping parameters can be simply
read off from the eigenvalues of a small system of N sites
with one fermion per color, i.e., one trion. The N lowest
states for U, in the case of a single trion in the system can be
associated with N momentum eigenstates and nicely fit on a
-2t cos k, curve, i.e., nearest-neighbor hopping dominates
at least well in the trionic regime. From this we can read off
the bandwidth D,=4t. of the effective trions band. We find
D,=1.5£*/U? for sufficiently large U. The third power of ¢
occurs due to the three single fermion hoppings necessary to
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move a trion as a whole by one site. As our data are obtained
on small systems one might worry if a finite-size gap
~1/length spoils the detection of the small kinetic-energy
scale for the trion. Note however that the relevant finite-size
gaps, measured by the difference between neighboring en-
ergy eigenvalues within the trionic band, also scale down
with /U2, ie., always remain smaller than the effective
bandwidth.

The effects of the interaction between the trions can be
readily observed in the spatial trion correlation functions
(n'(x)n’(x")), where n’(i):t;fti tells if there is a trion on site i
or not. As visible in the top part of Fig. 8 the main term is a
strong nearest-neighbor repulsion. The physical origin of this
is the suppression of a kinetic-energy gain of the order 1>/ U
due to single fermion site fluctuations if two trions sit next to
each other. This interaction V, ~#*/U is already comparable
to the effective bandwidth at U, which grows with respect to
the bandwidth deeper into the trionic regime. Hence the tri-
onic liquid is an intrinsically strongly interacting system of
heavy composite fermions.

What are the consequences of these interactions? First,
near half band filling on a bipartite lattice, V, will favor a
density-wave (DW) ground state of the trions with alternat-
ing densities from site to site. This state is adiabatically con-
nected to the density-wave state of the colored fermions at
weaker coupling.” In one dimension, this charge-density
wave for trions has been found numerically by Molina et
al.'® and Azaria et al.>' Moving the density away from half
filling, the DW order will melt, possibly with an intermediate
regime of phase separation. Yet, at one-third filling, it can be
seen that V; still strongly influences the trion system even in
absence of the DW. The trionic Green’s function is defined in
real space by

(0l£]|n)nlt0)
W= (EO_En) + l77+

(Oltilm)(mle}]0)
w — (Em_EO) + ”7+

Gij(w) = E

n m

with sums over intermediate states n,m and numerical broad-
ening 7. The first term corresponds to the emission spectrum,
i.e., transitions from the ground state into states with one
trion less while the second part is the inverse emission spec-
trum. The wave-vector-resolved spectral function is the
imaginary part of the Fourier transform of G;(w) to wave
vector k. This is shown in Fig. 6. The lower plots in (a) and
(b) are for two trions in the system. The =2z cos k-trionic
band exhibits a marked breakup «#*/|U| between portions
concentrated at |k|> /2 and portions connected to k=0
above the trionic Fermi level. Here the Fermi level is deter-
mined by the energy where the trion emission part ends and
where the inverse emission (trion addition) part starts, it in-
tersects the band at k== w/3. The half-filled k== m/3
states are slightly split up as well. In the upper plots of Figs.
6(a) and 6(b) we show the spectral function for just one trion
in the system. Now one can see a continuous trionic band,
but the inverse photoemission part contains another quasi-
band shifted upward by an energy «>/ U, which is a signa-
ture of the interaction of the added trion with the trion from
the initial state.
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FIG. 6. (Color online) Data for a six-site chain, one fermion/color for respective upper graph of (a) or (b), and two fermions/color in the
lower plots. The dashed line marks the trionic Fermi level, separating the trion emission from the trion addition spectrum. The trionic spectral
function (lowest feature in the plots) shows a cosine band of trion states. In the lower plots in (a) and (b) this band shows a gap opening
above the Fermi level at |k|=7/2 and some backfolding for the case of two trions. This gap [in the lower plot of (a) between w=—12.5¢ and
w=-12¢] is due to the nearest-neighbor interaction between the trions. It scales with #2/|U| and is larger than typical finite-size effects of the
system measured by energy differences in the band between neighbored k values. The width of the trion band with the gap subtracted scales
as 13/ U?. In the upper plots of (a) and (b) we observe a second, flatter band in the trion addition spectrum which is split up from the lower
ones again by an energy ~7>/|U|. The split occurs due to the interaction of the added trion with the initial state trion. A similar third band
is found in the lower plots of (a) and (b), arising from adding a third trion. There is also an additional split up of the k= * 7r/3 excitations
that seems to decrease in the same way as the bandwidth gets smaller with larger |U].

The many-particle spectrum at low energies with the
breakup of the trion band can be nicely reproduced with
spinless fermions with effective hopping ¢, and nearest-
neighbor interaction V. This comparison allows us to get the
value for the effective V; of the trions. We therefore first
simulated such a spinless fermion system, represented by the
Hamiltonian

H=-72 (cfe;+cje) + VX clec]e; (3)
i @y

with one spinless fermion on 16 sites and compared the
width of the spectrum AE with the U-dependent bandwidth
of the according trionic system,

AE P
teff(U)=T=y?- (4)

The proportionality factor results to y=1.50 where the
equality holds in the limit of infinitely strong attraction U.
With this value for the effective trionic hopping we com-
pared the gap within the trionic band that occurs due to the
strong trionic interactions for more than one trion in the sys-
tem with the gap in the spectrum of the spinless fermions

which becomes A= V+277 for large enough V. The second
term is a kinetic-energy loss due to the partial Pauli blocking
of neighbored sites depending on the density of the spinless
fermions, 7. For a system of two spinless particles on twelve
sites this gap opens between the 54th and the 55th lowest
state. The three-color trionic system develops a gap at the
same position, given by

U
A= 27teff+ 2egy1;. (5)

By equating the first term to the nearest-neighbor interaction
of the effective trion Hamiltonian, we get the very reasonable
result Veff=2%teff=3t2/ U for large enough U.

In summary, we find, including terms up to £}/ U?, the
following effective Hamiltonian for the trionic sector:

H 3P S (it + 1) 3 tzE ! (6)
=" 572 Gt GL) + D 2 .
‘ 20%G5 T Uy

From these terms we observe that there is a hierarchy of
energy scales: the dominant term is the nearest-neighbor in-
teraction Vg~ 2/ U, where |t/ U| < 1. The trion hopping is of
order #/U%. In this Hamiltonian, higher-order corrections
have not been written. In Fig. 7 we display the convergence
of trion hopping (or bandwidth, respectively) and interac-
tions toward these values as function of U. Notably, on the
two-dimensional (2D) square lattice the corrections are
stronger than in one dimension.

When we extend our analysis to a two-dimensional square
lattice, e.g., a square 4 X 4 cluster, the behavior of the trions
remains qualitatively the same. As the hopping is now al-
lowed in more than one direction, the width of the trion band
and the critical value of U before a trionic gap opens are
roughly doubled.

The effective nearest-neighbor hopping for the trions ver-
sus U is shown in Fig. 7. It approaches the same constant
t=1.5£/U? for large U. One however observes that with
increasing U the data in 2D converges from above to this
value while it comes from below in 1D. The difference is due
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effective parameter 1D vs 2D
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FIG. 7. (Color online) Data for a 16-site chain vs 4 X4 square
cluster, 111 filling for effective hopping (left vertical scale), 222
filling to find effective repulsion (right vertical scale). Left vertical
scale, open symbols: the 2D hopping (circles) shows an extra term
compared to the 1D hopping (squares). Right vertical scale, filled
symbols: the effective repulsion in 2D (circles) indicates the larger
U. for the trion regime than in 1D (squares).

to an additional higher-order hopping contribution ~#3/U*
coming from two-color fermions hopping directly to the
neighbored site and one-color fermion hopping around the
plaquette. Longer-ranged trion hoppings like the one across
the diagonal also exist but decay at least as %/ U> and are
hence less important.

Fitting the effective hopping dispersion in two dimensions
with a model including nearest neighbor (a), (linear) next-
nearest neighbor (b), and diagonal hopping (c),

n'(x)n'(0)
=)
wn
¥

0.2

0.18
0.16
0.14
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0.08
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0.04
0.02

0 1 2
dy
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tese(ky,ky)/t = const + a[cos(k,) + cos(k,) ] + b[cos(2k,)
+c08(2k,)] + c[cos(k, + k) + cos(k, — k)]
(7)

we get the following results for the u= U/t dependence of the
parameters

const = —3u—3u"!,
a=-3u?- 12u_4,
b=—6.7Tu>-12X 6.7u”,

c=2b. (8)

Here the prefactors of the second leading order terms in a
and b are not the result of best-fit procedures but lead to
reasonably small deviation from the numerical data using
integer numbers and simple fractions. The prefactor 12 in
front of the U™’ term in b and especially c=2b are exact
within numerical precision. This factor of 2 for the diagonal
hopping with respect to the linear next-to-nearest-neighbor
hopping can be understood easily as there are two ways
around the corner to the diagonal site.

As one would have expected, the spatial trion correlations
on the 2D square lattice exhibit again signatures of the ef-
fective strong nearest-neighbor repulsion. This can be clearly
seen on the 4 X4 plaquette with periodic boundary condi-
tions shown in Fig. 8. The nearest-neighbor sites (1,0) and
(0,1) have basically zero probability for both being occupied
if there is a trion on site (0,0). Considering second-nearest
neighbors, the diagonal neighbors (1,1), and the linear
second-nearest neighbors (2,0) and (0,2) are equally popu-
lated. For larger clusters we would expect to find enhanced

e LR TR
best fit -
0.025 A 1/U fit -eeeeee
002 4 =
0.015 - X
0.01 A
0.005 - e —_—
O ' T T T T T T
0 10 20 30 40 50 60 70 80

U/t

FIG. 8. (Color online) Left top: data for a six-site chain, two fermions/color, U=8t. The spatial trionic correlation function shows a strong
next-neighbor repulsion. The value of (n'(0)n(0)) <1 reflects the circumstance that the trions are composite particles that are broken up to
some degree by quantum fluctuations. Left bottom: data for a 4 X4 square cluster, two fermions/color, U=38¢. Trionic correlation function
shows strong next-neighbor repulsion similar to expectations for spinless fermions. Right: enhanced expectation value for trions on (2,2)
relative to expectation for spinless fermions and U dependence of enhancement. Best fit uses a U~! term plus an additional U~? term with

negative prefactor and has excellent agreement with the data.
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probability for trions on the linear neighbors instead of the
diagonal ones. This is based on the following idea. As a
fluctuating trion on site (1,1) has two neighbors (1,0) and
(0,1) that are affected by Pauli blocking mediated by the
fluctuations of the trion at (0,0), while on sites (2,0) or (0,2)
only fluctuations on one neighbored site are partially Pauli
blocked. This can be confirmed for spinless fermions, but for
the trions the largest system we can handle here is 4 X4,
where, e.g., (2,0) is only one hop away from (-1,0) and is
hence also confronted by Pauli blocking on two sides, and
there is no difference in the density correlations on these
sites.

While at first sight, the spatial trion correlations look very
much like the correlations of spinless fermions with appro-
priately chosen nearest-neighbor interactions, a detailed
comparison shows that for two trions on the small cluster, the
second particle is pushed away more strongly than for two
spinless fermions. The bottom of Fig. 8 quantifies this differ-
ence. The expectation value for finding the second fermion
on site (2,2) in the spinless fermion model is subtracted from
the normalized value for finding the second trion on site
(2,2). This difference decreases roughly like U~!, supporting
a -V model as effective model for large U, but showing that
for intermediate U the three-color model is still more com-
plex. The best fit of this discrepancy needs an extra U~2 term
and is «<(U~'=4U2). Note that longer-ranged effective hop-
pings not included in the spinless-fermion model cannot be
the reason for this difference, as they only start with U~.

As shown above in Fig. 3, the trionic regime is stable
against SU(3)-breaking interactions. From that, one might
already expect that the effective model is still valid some-
what away from the symmetric point. Indeed, numerically
we find that the effective parameters vary continuously when
the individual hoppings and interactions are made color de-
pendent. Hence, as long as the trions are well defined, the
effective model remains qualitatively the same. However, the
breakup of the trions at the borders of this regime might
differ a lot depending on how the SU(3) symmetry is broken.
Yet, in this paper we do not aim to explore these situations.

V. CONCLUSIONS

With an exact diagonalization study we have identified the
trionic regime of attractive three-color fermion systems on
simple one- and two-dimensional lattices. This regime devel-
ops out of the weak-coupling state with deconfined colored
fermions through a smooth crossover. The amplitude of non-
trionic basis states in the ground state becomes smaller with
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increasing attraction but never reaches zero at any finite U.
While the ground-state properties evolve smoothly, in the
excitation spectrum one finds a gap opening at a critical U
= half the bandwidth, where a band on trionic single-particle
excitations gets separated from less trionic excitations. This
signals the onset of a regime with well-defined trions
throughout the Brillouin zone. We have also shown that the
Cooper-pairing correlations go through a maximum slightly
below the trionic gap opening when U is increased but get
markedly suppressed in the trionic regime. This finite-size
picture is consistent with the previous variational study of
the color-superfluid-to-trion transition by Rapp et al.* On the
other hand, our data shows that the description of the trionic
state should be extended to capture the admixture of broken-
up-trion states to the ground state. These states are necessary
for the dynamics of the trions and might support remnant
Cooper-pairing correlations even in the trionic regime. In
this regime, the trions can be described by an effective model
of spinless heavy fermions with bandwidth ~#3/ U? and with
a strong nearest-neighbor repulsion ~2/U. Comparisons of
the low-energy many-particle excitation energies and the
spatial correlations of the three-color system with an effec-
tive spinless-fermion model showed good numerical agree-
ment. It allowed us to determine the prefactors for the effec-
tive parameters. In this sense, the trion liquid is an
intrinsically strongly interacting limit wherever the trions are
well defined. The trionic excitation spectra show strong de-
viation from simple bandlike behavior, at least at intermedi-
ate energy scales where the effective interactions cause a
breakup of the trion band. In the limit of large U, the trions
can be described by a lattice gas where the particles avoid
being nearest neighbors and where the kinetic energy is sup-
pressed by a factor of order ¢/ U.

The heavy trion liquid phase itself should be an interest-
ing laboratory for many-particle physics. As already pointed
out in the literature, the trions order in a density-wave pattern
on bipartite lattices when there is half a trion per site. Fur-
thermore, as interacting (quasi)fermionic particles, the trions
should undergo superfluid pairing transitions in the odd-
parity channel at low temperatures, reminiscent of neutron or
proton superfluid in astrophysics. This will be an interesting
topic for further research.
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